Error Estimation for Nonlinear Complementarity Problems via Linear Systems with Interval Data
نویسندگان
چکیده
منابع مشابه
Error Estimation for Nonlinear Complementarity Problems via Linear Systems with Interval Data
For the nonlinear complementarity problem we derive norm bounds for the error of an approximate solution, generalizing the known results for the linear case. Furthermore, we present a linear system with interval data, whose solution set contains the error of an approximate solution. We perform extensive numerical tests and compare the different approaches.
متن کاملSet inversion via interval analysis for nonlinear bounded-error estimation
AlWlmet--ln the context of bounded-error estimation, one is interested in characterizing the set of all the values of the parameters to be estimated that are consistent with the data in the sense that the errors between the data and model outputs fall within prior bounds. While the problem can be considered as solved when the model output is linear in the parameters, the situation is far less a...
متن کاملImproved infeasible-interior-point algorithm for linear complementarity problems
We present a modified version of the infeasible-interior- We present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545--561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which tar...
متن کاملchannel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Error Bounds for R0-Type and Monotone Nonlinear Complementarity Problems
The paper generalizes the Mangasarian-Ren 10] error bounds for linear complementarity problems (LCPs) to nonlinear complementarity problems (NCPs). This is done by extending the concept of R 0-matrix to several R 0-type functions, which include a subset of monotone functions as a special case. Both local and global error bounds are obtained for the R 0-type and some monotone NCPs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Functional Analysis and Optimization
سال: 2008
ISSN: 0163-0563,1532-2467
DOI: 10.1080/01630560801998054